Credibility Adjusted Term Frequency: A Supervised Term Weighting Scheme for Sentiment Analysis and Text Classification

نویسندگان

  • Yoon Kim
  • Owen Zhang
چکیده

We provide a simple but novel supervised weighting scheme for adjusting term frequency in tf-idf for sentiment analysis and text classification. We compare our method to baseline weighting schemes and find that it outperforms them on multiple benchmarks. The method is robust and works well on both snippets and longer documents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reducing Over-Weighting in Supervised Term Weighting for Sentiment Analysis

Recently the research on supervised term weighting has attracted growing attention in the field of Traditional Text Categorization (TTC) and Sentiment Analysis (SA). Despite their impressive achievements, we show that existing methods more or less suffer from the problem of over-weighting. Overlooked by prior studies, over-weighting is a new concept proposed in this paper. To address this probl...

متن کامل

Comparative Study and Analysis of Supervised and Unsupervised Term Weighting Methods on Text Classification

Text Classification is one of the booming area in research with the availability of huge amount of electronic data in the form of news article, research articles, email message, blog, web pages etc. Text Representation is a vital step for text classification. In text representation, term weighting method assigns appropriate weights to the term to get better performance; the term weighting metho...

متن کامل

Inverse Category Frequency based supervised term weighting scheme for text categorization

Term weighting schemes often dominate the performance of many classifiers, such as kNN, centroid-based classifier and SVMs. The widely used term weighting scheme in text categorization, i.e., tf.idf, is originated from information retrieval (IR) field. The intuition behind idf for text categorization seems less reasonable than IR. In this paper, we introduce inverse category frequency (icf) int...

متن کامل

Supervised Term Weighting Metrics for Sentiment Analysis in Short Text

Term weighting metrics assign weights to terms in order to discriminate the important terms from the less crucial ones. Due to this characteristic, these metrics have attracted growing attention in text classification and recently in sentiment analysis. Using the weights given by such metrics could lead to more accurate document representation which may improve the performance of the classifica...

متن کامل

Inverse-Category-Frequency based Supervised Term Weighting Schemes for Text Categorization

Term weighting schemes often dominate the performance of many classifiers, such as kNN, centroid-based classifier and SVMs. The widely used term weighting scheme in text categorization, i.e., tf.idf, is originated from information retrieval (IR) field. The intuition behind idf for text categorization seems less reasonable than IR. In this paper, we introduce inverse category frequency (icf) int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014